At the boundaries of syntactic prehistory: metric and non-metric distances

Andrea Sgarro
sgarro@units.it

Dept. of Mathematics and Geosciences, University of Trieste (I) Human Language Technologies Research Center, Bucharest (Ro)

RADH 2021
Bucharest, October 2021

Andrea Ceolin, Cristina Guardiano, Monica Alexandrina Irimia, Giuseppe Longobardi, Luca Bortolussi, Andrea Sgarro

At the boundaries of syntactic prehistory

Philosophical Transactions B, Royal Society (2021)

Andrea Ceolin, Cristina Guardiano, Monica Alexandrina Irimia, Giuseppe Longobardi, Luca Bortolussi, Andrea Sgarro

At the boundaries of syntactic prehistory

Philosophical Transactions B, Royal Society (2021)

Laura Franzoi, Andrea Sgarro, Anca Dinu, Liviu P. Dinu

Random Steinhaus distances for robust syntax-based classification of partially inconsistent linguistic data
IPMU 2020, Lisbon (Pt)

Parametric Comparison Method PCM

94 syntactic parameters, 58 languages from the Old World possible languages

94 parameters as before, 5000 possible languages

results

controversial clusters such as Altaic (Japanese, Korean, Mongolian, ...) or Uralo-Altaic were signifcantly supported, while other possible macro-groupings as Indo-Uralic or Basque-Caucasian were not

At the boundaries of syntactic prehistory:metric and non-metric distances

Longobardi distances, Hamming-like and Jaccard-like

```
L = 0| 1 * *| 1| 0| 1
\Lambda=0|0 * * * * 1 | 1
```

$$
\operatorname{dist}_{H}(\Lambda, L)=\frac{\# \text { bit differences }}{\text { "sound" bit length }}=\frac{2}{4}=\frac{1}{2}
$$

Longobardi distances, Hamming-like and Jaccard-like

$$
\begin{aligned}
& \mathrm{L}=0|1|^{*} \left\lvert\, \begin{array}{l|l|l}
1 \mid \\
\Lambda=0|0| *|*| & 1 \\
\Lambda=0 \mid
\end{array}\right.
\end{aligned}
$$

$$
\operatorname{dist}_{H}(\Lambda, L)=\frac{\# \text { bit differences }}{\text { "sound" bit length }}=\frac{2}{4}=\frac{1}{2}
$$

$$
\operatorname{dist}_{J}(\Lambda, L)=\frac{\# \text { bit differences }}{\text { sound length }- \text { "irrelevant" positions }}=\frac{2}{4-1}=\frac{2}{3}
$$

Longobardi distances, Hamming-like and Jaccard-like

$$
\begin{aligned}
& \mathrm{L}=0|1|^{*} \left\lvert\, \begin{array}{l|l|l}
1 \mid \\
\Lambda=0|0| *|*| & 1 \\
\Lambda=0 \mid
\end{array}\right.
\end{aligned}
$$

$$
\operatorname{dist}_{H}(\Lambda, L)=\frac{\# \text { bit differences }}{\text { "sound" bit length }}=\frac{2}{4}=\frac{1}{2}
$$

$$
\operatorname{dist}_{J}(\Lambda, L)=\frac{\# \text { bit differences }}{\text { sound length }- \text { "irrelevant" positions }}=\frac{2}{4-1}=\frac{2}{3}
$$

both might violate the triangle inequality

what should a distance be?

at least...

- $d(x, y) \geq 0$
- $d(x, x) \leq \min [d(x, y), d(y, x)]$
(ordered) triangle inequality

$$
d(x, y) \leq d(x, z)+d(z, y)
$$

Steinhaus transform or biotope transform of the distance d :

$$
S_{d}(x, y) \doteq \frac{2 d(x, y)}{d(x, y)+d(x, z)+d(y, z)}
$$

where:

- x, y, \ldots are objects (possibly strings)
- $d(x, y)$ is their distance
- z is a fixed object called the pivot z

We'll have to generalize to several pivots $S_{d}(x, y)$ preserves metricity

Steinhaus transform or biotope transform of the distance d :

$$
S_{d}(x, y) \doteq \frac{2 d(x, y)}{d(x, y)+d(x, z)+d(y, z)}
$$

where:

- x, y, \ldots are objects (possibly strings)
- $d(x, y)$ is their distance
- z is a fixed object called the pivot z

We'll have to generalize to several pivots $S_{d}(x, y)$ preserves metricity

From (normalized) Hamming to Jaccard: the objects are n-lenght strings, the pivot $z=\underline{z}$ is the all-0 string
x, y strings of n logical values

$$
d(x, y)=\sum_{i}\left[x_{i} \text { AND } \neg y_{i}\right] \text { OR }\left[\neg x_{i} \text { AND } y_{i}\right]
$$

x, y strings of n logical values

$$
d(x, y)=\sum_{i}\left[\begin{array}{lll}
x_{i} & \text { AND } & \neg y_{i}
\end{array}\right] \text { OR }\left[\neg x_{i} \text { AND } y_{i}\right]
$$

standard fuzzy logical operators, $\mathrm{OR}=\max , \mathrm{AND}=\min$
Solomon Marcus (1925-2016)
x, y strings of n logical values

$$
d(x, y)=\sum_{i}\left[\begin{array}{lll}
x_{i} & \text { AND } & \neg y_{i}
\end{array}\right] \text { OR }\left[\begin{array}{lll}
\neg x_{i} & \text { AND } & y_{i}
\end{array}\right]
$$

standard fuzzy logical operators, $\mathrm{OR}=\max , \mathrm{AND}=\min$
Solomon Marcus (1925-2016)
why do not start from the fuzzy Hamming distance?
x, y strings of n logical values

$$
d(x, y)=\sum_{i}\left[x_{i} \text { AND } \neg y_{i}\right] \text { OR }\left[\neg x_{i} \text { AND } y_{i}\right]
$$

standard fuzzy logical operators, $\mathrm{OR}=\max , \mathrm{AND}=\min$
Solomon Marcus (1925-2016)
why do not start from the fuzzy Hamming distance?

Łukasiewicz: $\quad \mathrm{OR}=\min [(x+y), 1]$, AND $=\max [(x+y-1), 0]$

taxicab or Minkowski or Łukasiewicz distance:

$$
d(x, y)=\sum_{i}\left|x_{i}-y_{i}\right|
$$

taxicab or Minkowski or Łukasiewicz distance:

$$
d(x, y)=\sum_{i}\left|x_{i}-y_{i}\right|
$$

$$
\begin{gathered}
* \Longrightarrow \frac{1}{2} \\
d(\text { bit }, *)=d(*, \text { bit })=\frac{1}{2}, d(*, *)=0
\end{gathered}
$$

pivot of the Steinhaus transform: the "totally unsound" all-* sequence consistency $\chi(x)$ of the string x : its taxicab distance from the all-* string

$$
S_{d}(x, y) \doteq \frac{2 d(x, y)}{d(x, y)+\chi(x)+\chi(y)}
$$

pivot of the Steinhaus transform: the "totally unsound" all-* sequence consistency $\chi(x)$ of the string x : its taxicab distance from the all-* string

$$
S_{d}(x, y) \doteq \frac{2 d(x, y)}{d(x, y)+\chi(x)+\chi(y)}
$$

weight $w(x)$ of the string x : its taxicab distance from the all- 0 string

$$
S_{d}(x, y) \doteq \frac{2 d(x, y)}{d(x, y)+\min [\chi(x)+\chi(y), w(x)+w(y)]}
$$

thanks, mulțumesc, grazie

